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Abstract
This work introduces a quantum circuit synthesis methodology for simulating the unitary evo-
lution under a subclass of symmetric Toeplitz Hamiltonians by decomposing them into specific
diagonal matrices M. These My are then classified, to achieve significant simplification, into
power of two bands (k = 2™) and congruence classes where the matrices coefficients are equal.
Finally, we construct the explicit simulation circuit for the 1D discrete Poisson equation.
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1 Introduction

Solving large systems of linear equations of the form Hz = b is a fundamental problem across
many fields of science. Quantum computing offers a potential speedup for these problems through
algorithms like the Harrow-Hassidim-Lloyd (HHL) algorithm [4]. The core of the HHL algorithm
relies on simulating the time evolution of a quantum system described by the Hamiltonian H
which is achieved by implementing the unitary operator e~*#*. This approach is effective because
the eigenvectors of the matrix H are the same as those of e’'*, and their eigenvalues are directly
related. A significant class of these problems, particularly those arising from the discretization
of differential equations, can be described by Hamiltonians represented as symmetric Toeplitz
matrices.

In this work, we present a systematic methodology for the decomposition of specific symmetric
Toeplitz matrices and the synthesis of their quantum circuits to simulate their corresponding time
evolution. We address the challenge by first decomposing the target matrix into a sum of simpler
M), matrices, each corresponding to a specific diagonal. We then develop circuit construction
techniques for two key cases: M} where k is a power of two, and congruence classes where the
coefficients of M}, are equal. The latter case reveals a remarkable simplification, where the sum of
M}, matrices reduces to a simple tensor product of Pauli operators. The overall simulation is then
constructed by approximating the total evolution using a Trotter-Suzuki decomposition. Finally,
the practical utility of this approach is demonstrated by applying it to a canonical problem in
physics: the simulation of the one dimensional Poisson equation.



2 Preliminaries

In this section, we first recall the mathematical tools needed, then present the structure and
notation of quantum circuits.
We begin by defining Hilbert spaces and quantum states (Section 2.1), then introduce basic op-
erators, gates and their properties (Section 2.2.1), and conclude by illustrating simple quantum
circuit constructions (Section 3.3.1).

2.1 Hilbert Spaces and States

A Hilbert space is a complete vector space with respect to the norm = — (z, x)é, in the sense
that any Cauchy sequence converges to a defined limit within the space, its inner product is defined
by :

e (v,w) = (w,v), this implies that (w,w) is a real number.
o (Mg + vy, Bw) = AB{v1,w) + B(ve,w) with \, 3 € C
o (z,2) >0

In quantum information theory, we work with finite-dimensional Hilbert spaces H" (n € N), since
each qubit resides in its own Hilbert space and we have a finite number of qubits. We denote the
canonical computational basis of H? by

{10), 1)}

In Dirac notation, a "ket” |+) represents a column vector. Its conjugate transpose (1| = (|))T, is
called a "bra”.

A general qubit pure state is written
) = a[0)+0b[1)

where a,b € C and the normalization condition |a|? + [b|*> = 1 ensures (¢|¢) = 1.

When the system is in the state 1), the outcome of a measurement is either 0 with |a|? probability
or 1 with |b|? probability.

2.2 Operators and Quantum circuits
2.2.1 Operators

An operator in quantum mechanics is a linear map from a Hilbert space to itself, it describes
the evolution (or other transformations) of a given system. For instance, if an initial state is |},
a unitary operator U evolves it into

|¢) = U l¢)
An operator U is called unitary if it preserves inner products. This implies that, for any two states

¥),19)
Uy |Ug) = (4] ¢)

Equivalently if
UUt = U'U =1

In the case of time evolution under a time independent Hamiltonian H (which is Hermitian,
H = HT), the Schrodinger equation

has the solution
with ‘
Ut) = e "H?

Thus any unitary operator can be considered as the exponential of a hermitian operator:

U=e " H=H



To introduce the elementary operators, consider a spin % system. By definition [2], a measure-
ment of its angular momentum along any axis gives only the two eigenvalues :I:%. We denote the
corresponding operators by 5}, Sy, and Sz. These are related to the Pauli matrices o, 0y,0, via

g h
T,Y,2 T §Ua:7y,z

where the Pauli matrices are

0 1 0 —2 1 0
Og = y Oy = y 0z =
1 0 1 0 0 —1

These satisfy the commutation and anticommutation relations
[O’i,O'j] = QiEiijk
{Ji,Jj}: 2(5”1

where ¢;55 is the Levi Civita symbol and 6;; the Kronecker delta.

Pauli matrices and the identity form a basis of Msx2(C), and any 2™ x 2™ matrix can be
expressed using a linear combination of their tensor products. For A € Man »on (C), we have :

n
A= E Ciy.iin ®Uik> oi, €{1,04,0y4,0.}, ¢iy..q, €C
i1

resin k=1

From a computer science point of view, the Pauli matrices act as elementary quantum gates.
In particular, o, is the analogue of the classical NOT gate:

o, |0) = 1)
o, 1) =10)

The phase flip gate o, acts by
0. |x) = (=1)" [z)

for z € {0, 1}.

We also introduce the Hadamard gate, denoted by H. Its matrix representation is

0o 1 (1 1
_\/§<1 —1>

and it transforms the computational basis states as

H [0) = 5 (10) + (1))

H 1) = 5 (10) = [1))

S-S

2.2.2 Quantum Circuits

Quantum memories cannot execute arbitrary unitaries at once. Instead, it is restricted to a
finite set of basic unitary operations, called gates. These gates act on one or multiple qubits at
a time and are represented graphically in circuit diagrams, where each gate symbol specifies the
corresponding unitary transformation.

Each horizontal line (or ”wire”) represents the state of one qubit, and time flows from left to right.
Gates are placed on these wires to indicate operations:

e A box labeled X applies a NOT to the qubit.

e A box labeled H applies a Hadamard gate to the qubit.

A dot connected to a box (or another dot) implements controlled operations (e.g. CNOT).

A meter symbol denotes measurement in the computational basis.



For example, the following two qubit circuit prepares a Bell state and then measures both
qubits:

Here:

e The top wire starts in |1), receives a NOT (as if it started in |0)), receives a Hadamard (H),
then acts as control for a CNOT.

e The bottom wire is the target of that CNOT.

e Finally, both qubits are measured giving classical bits m; and ma.

3 Symmetric Toeplitz and Band Matrix Decomposition
and Circuit Synthesis

In this section, we study a special class of hermitian matrices : symmetric Toeplitz matrices,
and we develop quantum circuits to synthesize its unitary evolution. We begin by formally defining
symmetric Toeplitz and band matrices (Section 3.1). We then decompose these matrices into sums
of simpler components M}, (Section 3.2), leveraging their tensor product structure. Finally, we
derive explicit quantum circuits (Section 3.3) to implement e ~*Mx?,

3.1 Definitions
Symmetric Toeplitz and Band Matrices
A Toeplitz matrix [1] is a n X n matrix A whose entries are constant along each diagonal:
Aij=Aiv1j41 = Ai—1 -1 Tfor all valid 4, j
A symmetric Toeplitz matrix satisfies A; ; = A; ;, so its entries depend only on |i — j|:
Aij = aji—j)
() ay a2 - Qp-1

a1 Qg a1

A=\ 6y, a1 a0 - a
aj
apn—1 -+ QA2 a1 Qg

A band matrix has nonzeros confined to a diagonal band: if its lower bandwidth is p and upper
bandwidth ¢, then
A;; =0 whenever j <i—porj>i+gq.

Combining both gives a symmetric Toeplitz band matrix with bandwidth m (p = ¢ = m):
A= Jdi—g li=gl=m
g = .
07 |Z - ]| >m

and in full form

ag ai - Gy 0 .- 0
ayp Qo
al ag . 0
A=|gu., . a a a
0 as ai ap Qm
aj
0 0 Ay Q1 Qg



A particular case is the tridiagonal one (m =1) :

ao a1 0 te 0

a1 Qg a1
A={0 a a - 0
L a1
0 0 al ag

3.2 Decomposition

Let A be an N x N symmetric Toeplitz matrix with N = 2". A is also Hermitian (AT = A):

ap ap a2 -+ GN-1

ai ap .

A= ag aq ap . as
ay
aN—1 -+ Qa2 ai ao
To implement the unitary e~*4*, we first decompose A into a sum of “band” matrices,
N—1
A= M,
k=0
where each
N-1—k
My =ar Y (|i) i+ k| + i + k) (i)
i=0
a 0 0 - 0 0 ag@ 0 --- 0 0
0 ap O ; a0 ay ; 0
Mo=10 0 a "~ o|M=]0 a 0 . o M=]qg
: e ) Lo .y :
0 -+ 0 0 a 0O -+ 0 a O 0
Since e~ Mot ig diagonal and trivial to implement, we focus on M, for k > 1.

Let’s start by an example which will make it easier to generalize later.
Take N =8 :

M1:CL1

O R OKHEOOOO
= O = OO0 0oOO0o
o= O OO0 o oo

OO O OO O O
OO O OO O
OO OO OO
OO O RO OO
O O OO OO

We find that :

=

=an(IelIeX

+
L
=

P

where

R, =

SO oo oo ~Oo
[N elNoeNoNoll ool
SO OO+ OOOo
S oo, OO oo
[=Nel ol eNeNoNo)
O OO OO oo
_ O OO0 0o oo
(=N elNoloNoNoNoallS
S o oo oo~ OoO
SO OO OO o
SO OO OO Oo
[N e NeNoNoll o o)
SO RO OO OO
[N eNell o Ne o N
SO OO OO OO
SO OO OO oo
\



Since Ry and PRy P~! describe the same endomorphism, they share the same characteristic poly-
nomial proving the existence of such matrix P (see figure 1). Moreover, P~ = PT.

In addition, Ry is I ® I ® X but with its last non-null 2 x 2 block being null. When structured
into diagonal blocks, R; becomes straightforward to implement.

0 1\0 0 00 0O 0 00O O0OO0OO0OTO

1\0 0 00O 0O 001 00 0O0°O0

0°0 0 1\0 0 0 0 0100 0O0O0°O

100 1.0 °0 0 0 O 4+ _|0 0 0 01 0 0O
R1*000\001\00—>PR1P*00010000 (1)

0 0 0 0 1\0 0 0 0 000OO0OO0OT1F®O

0000 00 O0O0 00000 1O0O0

000 0 O0OO0OTO0DTO O 0000 O0OO0OO0TO
Applying the same logic to the other bands that are power of 2, considering appropriate block size:

e For k=2, using 4 x 4 blocks: My = as (I® X ®1 + P?Ry(P71)?)
e For k =4, using 8 x 8 blocks: My = a4 (X Q@I®1T)

This pattern leads to a general conclusion for bands that are powers of 2 for 2™ x 2" symmetric
Toeplitz matrices:

Fop b —om JIEM<n—1, My = ap (1= @ X @ I®™ + PF R, (P~H)F)
or k =
fm=n—1 M1 = agn (X ® [201)
In each case, the notation I®™ @ X @ I®(™="=1) means an n-fold tensor product with X at the
m-th position (counting from 0)

We now consider the remaining bands for & > 0 (not necessarily powers of 2) and distinguish
cases based on the parity of k. Each M can be expressed as a sum of tensor products involving
the Pauli X operator and permutation matrices. For clarity, we list a few examples in an N = 2"
dimensional space. We use the same decrementer permutation matrix P and block matrix Ry as
before.

o My =a;(I®" Y ®X+ PRP)

o My=ay(I®" D@ X @I+ PRyP2?)

M;=a3[I®"2@X®X — PRP™! +P?RyP~2 + (PRyP~ '+ P3RsP3—R}) |.

Here R} denotes the matrix Ry with its first 2 x 2 block set to zero (as in our notation above)

My =a;(I®" @ X ®I® I+ P‘RPH)

M; =as[I®" D @XRI®X +PRsP~* — (PRyP™'+ P3RsP~3 —R}) + (PRsP'+
P5R5;P~% — R; + R})|, where R} is R3 with its first 2 x 2 block set to zero, etc.

Each term above shows the decomposition of M} into a "base” tensor product operator (with
X’s in certain positions) plus additional terms involving the permutation P and R; matrices. The
exact pattern of these extra terms depends on the bitwise structure of k£ and ensures the correct
structure of My. In practice, one can verify these formulas for n > 3 by comparing with the
definition of M.

An important observation arises when groups of coefficients a; are equal, the P dependent terms
cancel in the sum, leaving only the simple tensor product terms determined by the binary patterns.
For example, write each index k in binary and interpret each bit ”1” as applying X on that qubit
and each 70" as applying the identity I

In the 3 qubit case (n =3, N = 8), if a; = a3 = a5 = ay = ¢, the odd indices 1, 3,5, 7 have binary
forms 001, 011, 101, 111. Replacing 1 — X and 0 — [ gives the operators I @ I @ X, I ® X ® X,
X®I®X,and X ® X ® X. One checks that

Mi4+Ms+Ms+Mr=c(IQIX+IX@X+XRIX+XX®X)



All P dependent terms vanish in the sum. Similarly, if we let aa = ag in the N = 8 case (indices
2 =010 and 6 = 110), then

Mo+ Mg=a0(IX@I+XXQI)

More generally, this pattern holds for other congruence classes of indices. For instance, if as =
ag = ajp = a4 = --- all coincide, one sums over indices whose binary form ends in 710" (in the
two least significant bits) or indices congruent to 2 mod 4. Replacing 1 — X and 0 — I in those
bitstrings again gives the expected result. Likewise, if a4 = a;2 = ago = --- (indices congruent to
4 mod 8), then the sum reduces to the tensor products determined by binary endings ”100”.

For any fixed 1 < j < n, consider the congruence class
C; = {k:1<k<2" k=27""mod2%)}
Writing each k& in its n-bit binary expansion
k= (bpbp_1...b1)2

and setting

ity _ [ X bik) =1
I, bi(k)=0

one obtains the following sums whenever all aj with k£ € C; coincide:
(1) j =1 (odd indices):

S oMesa Y@

1<k<2n 1<k<2" =1
k=1 (mod 2) k=1 (mod 2)

(ii) j =2 (indices =2 (mod 4)):

S M= Y@

1<k<2" 1<k<2™ i=1
k=2 (mod 4) k=2 (mod 4)

(iii) j = 3 (indices =4 (mod 8)):

Z M, = a4 Z éXbi(k)

1<k<2" 1<k<2™  i=1
k=4 (mod 8) k=4 (mod 8)
For N =8:

01 01 01 01 0O 01 00 0 10

1 01 01 010 0 001 0 0 0 1

01 01 01 01 1 0 001 0 0 O

(i) 1 01 01 0 1 0 (if): 01 0 001 00O
01 01 010 1}’ 0O 01 00 0O 1O

1 01 01 0 10 0 001 0 0 0 1

01 01 01 01 1 0 001 0 0 0

1 01 01 010 01 00 01 0O

In general, for 1 < j < n,

Z Mk = Q9j-1 Z éXbi(k)
1

1<k<2™ 1<k<2™ d=
E=27"1 (mod 29) k=27"1 (mod 27)



3.3 Circuit Synthesis

At this stage, we decomposed A into, power of 2 matrices, and sums of M that depend on their
congruence class. A or variants of A can expressed as a general tensor product of Pauli matrices
and P dependent terms. Once exponentiated, the unitary evolution e~*4* reduces to a sequence
of straightforward rotation gates interleaved with permutation operations. When the exponential
terms do not commute, we use Trotterization [3] to approximate their combined exponential:

oPHQ (eP/v eQ/v)U
The larger the u is, the better approximation we get.
3.3.1 Power of 2
We'’ve seen that if £ = 2™ with m < n — 1, then
M, = ap (I®m"D @ X @ I®™ + PF R, (P~HF)

We will denote

m=1%C"m"D g X @ I®™

mo = P* Ry PF
The unitary is then expressed as :

Uk(t) — e—’ith — e—itak(‘n'l—&-‘n'g)

Since [my,m2] #0 ' 4
Up(t) = e "axm g=itarm™ 4 O([r) m5])

Using Trotterization
Uk(t) ~ (efi% ap T efi% ak 71—2)1,

. . . _4t _4t
Uy, is expressed as the product of two unitaries : Uy, = e "» %™ gand U,, = e v % 72,
1 2

Implementation of U,

The circuit of Uy, is given by :
4 y t
Up,(t) = e7i5% ™ = [8(n=m=1) @ o~igaxX @ [@m _ [8(n—m-1) g p (2°q,) g [®™
v

The unitary acts as a single qubit rotation on ¢, 41.

q1

dm

m+1 — R, (2axt) —o

v

dm+2

qn

Implementation of U,

The circuit of U, is given by :
U, (t) = e—itax P" R, P™" _ pk —ilax Ry p—k

Since P is a decrementer, P* decrements k times and P~*! increments k times



q2 — L
Gm+1 —| pk R.(2apt) —B— Ry (—2a L) —P— p—F —
dm+2 — —

" | [

Therefore, the final circuit is obtained by repeating the following subroutine u times:

q1 L
q2 L
Gm+1 — Ry (2at) | p* R.(2axt) —B— Ro(—2a3 L) —d— p—F —
dm+2 [
dn | l L

If k =271, then
Mynoi = ago-1 (X @ 1271

Its unitary is expressed by :
Uznfl(t) = et Mon—1 _ pmitagm— (X @I®n=1) = e a1 X® I®(n_1) = Rm(? Qon—1 t) ®I®("_1)

Thus, its circuit is :

q1

Qm+1

qn RI(2a2n_1t)

3.3.2 General Congruence Class
For any fixed 1 < j < n, consider the congruence class
C; = {k:1<k<2" k=27 (mod?2’)}
the sum for all k € C} is :
D YN SRR - I
1<k<2" 1<k<2™ =1
k=271 (mod 27) k=271 (mod 27)

The binary constraint k = 277! (mod 27) fixes the j least significant bits to (b;,...,b1) = (1,0,...,0).
Thus, the general term in the sum is:

X X1 @ Xt @ X @ [O0D

Consider the sum over all possible combinations of bj;1,...,b,. This is equivalent to summing
over all possible tensor products where the last element is X @ I1®0U—1),
Thus, o can be represented as :

0 = Qgi-1 Z Z (an RXr-1®...0 X0t @ X Q I®(j—1))
bn€{0,1}  b;41€{0,1}



This sum can be factored due to the linearity of the tensor product:
0 = a1 Z X | ® Z X1l @@ Z xbit1 | @ X @ 190-D
bn,€{0,1} bn-1€{0,1} bj+1€{0,1}

Since 3 pe 0,1 X = X9 4+ X! = I + X, it simplifies to:

0=ty [+X)@T+X)® - @[ +X)®X @0~V

n—j times

Therefore, the unitary becomes in this case :

— Citans ®(n—3) ®@G-1)
Ug(t) — e ito _ e ita,j—1 (I+X) RKXRI

One finds using X =2H Z H :
I+X = 2H|0)(0|H

Hence
(I + X)®(n*j) ®RX = 271*3' H®(n*j+1) (|O> <O|®(n7j) ® Z) H®(n7j+1)

so that
o= a1 9n—j (H®(n*j+1) ®I®(j*1)) (0) <0|®(n—j) ® Z®I®(j71)) (H®(n7j+1) ®I®(J’71))
Thus
Uy(t) = (HO=3+D) g [0-D) gmiag—1 2"/ t(0)0F" P @ 2@ 19070) (g@(n—j+1) g [9(i-1))
The exponential is an (n — j) controlled R, on qubit g,—;11, with angle

0 =2ag— oIt = Aoj—1 gn—itly

q1
q2

qj—1

q;

H

dj+1

A

oo [T}

Complexity Analysis

Let w = n — m. The circuit of M}, when k is a power of 2, is dominated by the cost of the
P. For a single Trotter step, the cost of implementing a w—controlled rotation is O(w) gates and
O(log(w)) depth using ancilla qubits. Therefore, the circuit’s complexity depends on the adder
type, and can be summarized in the table below:

Adder Type C;’step Dstep Gtot =u Gstep Dtot = UDstep

Ripple-carry O(w) O(w) O(vw) O(vw)
Carry-lookahead O(w) O(logw) O(vw) O(vlogw)

Table 1: Circuit gate and depth complexities per Trotter step and in total on an n qubit register.[5]

The carry-lookahead adder provides a depth advantage for each M) but at the cost of additional

ancilla qubits.

When k = 2"1, it becomes a special case where the complexity is O(1) since it is a single rotation.
The gate and depth complexity of the circuit associated to each congruence class C; is O(n —j)

at the cost of O(n — j) ancilla qubits. Without ancilla qubits, it requires O((n — 5)?) gates and

depth O((n — j)?).

10



4 Application

Symmetric Toeplitz matrices appear in many contexts ranging from the Black-Scholes equation
in finance to quantum machine learning and quantum simulation. They commonly arise when
discretizing differential equations using finite difference methods. Their structure, particularly
their bandwidth, depends on the order of the chosen approximation. To illustrate this, we consider
the case of the Poisson equation.

Discrete Poisson Equation

Let’s consider the 1D Poisson equation with Dirichlet boundary conditions:

A¢ = —p(m), U [OvL]’ ¢(O) = ¢(L) =0

We discretize the domain (0, L) into K intervals of width h = L/(K + 1), resulting in K interior
grid points x; = ih for i = 1,..., K. The discrete field values are ¢; = &(z;), with ¢g = 0 and
¢x+1 = 0 due to the boundary conditions.

The central difference approximation for the second derivative at grid point 3 is:

P it — 20 + ¢ia
dz? |, h?

Applying this to the Poisson equation at each interior grid point, we get:

i -2 i 71— ;
¢+1 h¢2 +¢ 1 = —pi, 1= ]-7~"7K

This system of K linear equations can be written in matrix form L¢ = —p, where ¢ = (¢1, ..., dx )7
and p = (p1,...,pr)T. The discrete Laplacian matrix £ is the coefficient matrix of ¢ and is given
by the tridiagonal system: [6]

which is a symmetric Toeplitz band matrix where the bandwidth b = 1.

The unitary evolution e™*** is equal to e~**Pte~*#1t gince [Lp, £1] = 0 with
-2 0 0 1
Lo —2 o 1l 0 1
ED - ﬁ . .. ) El - ﬁ
0 -2 1 0

e *£pt corresponds to a global phase, which has no effect on the circuit and can therefore be
omitted in the implementation.
L1 is the M7 matrix up to a coefficient. Thus, using the result of Section 3.3.1, for m =0

1
Li=13 (1°"Y @ X + PR, P71)

Its unitary is then given by
e*iﬁlt ~ (I@(’I’L*l) ®€#X P@ﬁRl P*l )u

Therefore, the circuit is obtained by repeating the following subroutine u times where u is the
Trotter step:

@1 — Ry(2-5) H Ro(2-5) P Ro(—2+1) B -
q2 . p . p-1 —
dn i i -

11



5 Conclusion

In this report, we have presented a methodology for constructing quantum circuits to simulate
the unitary time evolution governed by symmetric Toeplitz Hamiltonians. The core of our approach
lies in a strategic decomposition of the matrix into (M},) matrices, for which we have developed
targeted synthesis techniques. We have shown that for those indexed by powers of two (k = 2™),
the evolution can be implemented using a combination of qubit rotations and permutation matrices
(quantum adder). Furthermore, we established a significant result for cases where coefficients of
matrices within the same congruence class are equal, showing that their combined Hamiltonian
simplifies to a sum of tensor products of Pauli operators, allowing a circuit implementation via
multi-controlled rotation gates.

The application of this method to the discrete 1D Poisson equation underscored its practical
relevance, providing a concrete algorithm for simulating a fundamental physical system. The
methods presented in this work provide a systematic approach to addressing a wide range of
problems.

Future work will focus on extending this framework to general symmetric Toeplitz matrices
and performing detailed benchmarking of the algorithm to analyze Trotter errors and resource
overhead.
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Appendix : Proofs

Pauli matrices

We will prove that any 2" x 2™ matrix can be expressed using a linear combination of tensor
products of Pauli matrices and the identity:

1. For 2™ x 2™ matrices, let’s consider all tensor products:
{@Ulk | o-ik E {Ia 0-:E7O-y)0-2}}
k=1
There are 4™ such products, matching dim(Man 20 (C)) = (27)2 = 4™.
2. For distinct products B = @), 05, and C = Q). 0j,:

T(B'C) =[] Tr(o] 0;,) =0
k=1

since Tr(o] 0;) = 26;;. This proves linear independence.

3. Thus, the 4™ tensor products form a basis by dimensional matching (4™ elements) and linear
independence. QED.

12



Trotterization

We will prove that

n—oo

. . . k
Using the power series expansion eX = 377 ) 3+, we

AT =T+ iA% + O(n_2), e'B

Hence

. At ipt\™
lim (e“‘n ean) =

pi(A+B)t
have for large n:

wo=1+ z’B% +0(n7?)

. t ; t t
eAw B = T +i(A+ B)—+ O(n™?)

Raising to the nth power gives

(A5 BE) = [T+ i(A+ B)i+0(5)]" =Y k!(m_ﬂ(i(M B)t)"

n? n—=Fk)!n
k=0
But
. n! L ILnn—1)(n-2)...(n—k+1) 1 1 2
A R P A (=) a=0)
Therefore
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